

What is “Procedural Texturing”?
Creating surface textures has a variety of applications, from obvious aesthetic effects to
increasing mechanical grip or decreasing aerodynamic drag. The required geometries can be
difficult to draw manually and even more difficult to scale and conform around complex parts.
This is where “procedural texturing” can be advantageous over the manual modeling of surface
features. Another application is when a texture must look “natural”, in that there are no
obvious repeating unit cells (e.g. leather as opposed to knurling).

As the name suggests, this approach generates a surface texture using a mathematical
procedure or algorithm. This allows for very high performance and scalability of a texturing
workflow, and the ability to apply it to any new part. Creating a new texture (the topic of this
article) can be non-intuitive at first, but once mastered can become the ultimate creativity tool
in your arsenal.

Why is nTop good at it?
nTop’s implicit modeling engine is mathematically based, and natively compatible with
procedural texturing recipes. Field-driven design allows users to control the size, shape, or
strength of the texture however they desire.

Note that other texturing methods are available in nTop ​as well​, and can sometimes be easier
for simple parts.

https://support.ntopology.com/hc/en-us/articles/360042365673-How-to-Create-a-Voronoi-Surface-Texture

1. Roughness
Adding roughness is perhaps the simplest procedural texture, and a foundation for the more
advanced ones below. It involves three easy steps: generating noise, scaling the noise, and
applying it to a part.

Roughness begins with a Simplex Noise 3D block.

Using the field viewer (press F), you can see that the noise ranges from -1 to 1 (toggle “Probe
Values” on the Field Viewer dialog, and hover over the field). The influence of the frequency
input is best visualized by changing the value, and the random seed is useful if you want to
layer multiple noise functions without them coinciding, or to randomize different parts’
textures.

We need to assign length units in order for it to change the shape of a part. Using a multiply
block assigns units of length, and also the strength or amplitude of the noise. Imagining this as
a digital signal or 3D oscilloscope may help.

The resulting field now has units of length, and can be used in an Offset block to add and
remove material (the original sphere is shown in green). The magnitude of this multiplying
value controls the depth or strength of the texture, and can be varied spatially (as indicated by

the curved field icon).

Organizing the notebook, one can now swap in any part into this roughness texturing workflow,
including imported CAD or mesh files (once converted to Implicit).

Shown on an imported CAD part:

See example file: Texturing - Roughness.ntop

The texture depth can be controlled with a ​ramp​ block in the multiply input. Here we show
fading from smooth (0 mm) to textured (1 mm) as we proceed away from the plane.

See example file: Texturing - Roughness - Varying Amplitude.ntop

https://support.ntopology.com/hc/en-us/articles/360041676813-How-does-the-Ramp-block-work-

The texture’s frequency can also be controlled by ramps, with a few more steps. Here we use a
Remap Field block to warp the underlying noise field. A ramp block is used in each of the X, Y,
Z inputs (recall the noise signal extends in 3D), each with their respective axis being divided by
10 as we move away from the plane.

See example file: Texturing - Roughness - Varying Frequency.ntop

The two effects (ramping both frequency and amplitude) can also be combined.

2. Leather
Cellular Noise is another block available and is useful for replicating natural textures such as
leather.

Effect of different Return Types in the Cellular Noise 3D block.

Applying this type of noise to our shape is very similar to the roughness texture shown earlier.
For leather, we’ll proceed with Distance2 Div, since it looks most similar to the effect we are
aiming for.

In between our Noise and Multiply block, we use a Clamp. This essentially thresholds the noise
signal (which runs from 0 to 1) to be between 0.75 and 1 only. This will create flat spots in our
leather cells, rather than mountains, and is easier to visualize with the Turbo option in the Field
Viewer.

We want to etch this field into the part, so we use a negative value in the Multiply block. This
offsets the creases (high spots in the field) inwards.

To make it more realistic, we can add a fine layer of roughness to the leather. Here we used
variables to keep the frequencies proportional to one another (the roughness being 10x the
frequency of the Cellular Noise). Be sure to only use a small amplitude here. You may need to
do the high-res Ctrl+H render to see the effect.

See example file: Texturing - Leather.ntop

3. Wood
Generating a wood texture in nTop adds another series of blocks into our file: trigonometry
functions. We can use these to create waves which resemble the rings in wood.

The period of the waves can be linked to noise functions, allowing control over how chaotic the
rings look. With a high frequency value, the texture may begin to resemble some sort of
magnetic material instead.

See example file: Texturing - Wood.ntop

4. Marble
As a final bonus texture, here is an example file for a Marble texture. This one combines
everything we have learned above: noise functions, remaps, clamps, and trigonometric
functions. It is best stepped through carefully with the field viewer.

See example file: Texturing - Marble.ntop

